
Can Social Screencasting Help
Developers Learn New Tools?

Kevin Lubick∗, Titus Barik†, Emerson Murphy-Hill∗
∗North Carolina State University, Raleigh, North Carolina USA
†ABB Corporate Research, Raleigh, North Carolina, USA

kjlubick@ncsu.edu, titus.barik@us.abb.com, emerson@csc.ncsu.edu

Abstract—An effective way to learn about software develop-
ment tools is by directly observing peers’ workflows. However,
these tool knowledge transfer events happen infrequently because
developers must be both colocated and available. We explore an
online social screencasting system that removes the dependencies
of colocation and availability while maintaining the beneficial
tool knowledge transfer of peer observation. Our results from a
formative study indicate these online observations happen more
frequently than in-person observations, but their effects are only
temporary. We conclude that while peer observation facilitates
online knowledge transfer, it is not the only component — other
social factors may be involved.

I. INTRODUCTION

Software developers obtain knowledge about their trade in a
variety of ways. These include reading books, browsing sites
like StackOverflow, and socially, by directly observing peers’
workflows. This last way, known as peer observation, has been
shown to be particularly effective at transferring knowledge of
functionality within development applications, such as Eclipse
or NetBeans [1], [2]. These functionalities, or more generally,
tools, can be as mundane as PASTE or as sophisticated as
INTRODUCE PARAMETER OBJECT. For example, while pair
programming, developer Jim sees his partner quickly jump
to an unopened file using a keybinding. Astonished, Jim asks
“How did you do that?” and learns the tool OPEN RESOURCE.

Despite peer observation being effective at this tool knowl-
edge transfer, such events might only happen once per month
for a typical software developer [2]. Peer observation is typ-
ically impeded because it requires developers to be available
in the same place at the same time to work together.

We hypothesized that it would be possible to overcome these
availability and colocation requirements with an online, asyn-
chronous environment that facilitates tool knowledge transfer
like in-person peer observation. Our approach, Continuous
Social Screencasting [3], extends traditional software develop-
ment by continuously and automatically recording video clips,
called screencasts, of interesting situations [4]. In our system,
these screencasts are recorded anytime a developer uses a tool.
The developers can share these screencasts with their peers to
show them how they use the tool. Further, to take advantage
of social connections, our system is intended to be used by
groups of people who work with each other.

To evaluate our approach, we conducted a formative, seven-
person study of a prototype social screencasting system. This
paper describes a preliminary analysis of this study which

explores the effect of social screencasts on tool knowledge
transfer. The participants had tool usage habits where even
experts could learn from their peers. We observed that five
participants were able to learn about a new tool from their
peer’s screencasts. However, we were unable to identify sig-
nificant changes in their tool usage behavior at the end of the
study. We conclude that while social influences may facilitate
tool knowledge transfer in an in-person setting, they do not
guarantee transfer in an online environment.

II. FIELD STUDY METHODOLOGY

The seven participants in our field study were members
of the authors’ software engineering research lab which
included the authors of this paper. Participants have been
given pseudonyms in the following discussion. We installed a
prototype social screencasting system on their work computers
and told participants to work normally as we collected data for
the following four-week period. Our system supported auto-
matically generating screencasts for Gmail, Eclipse, and Excel,
three applications the participants used frequently. Gmail is
a particularly interesting case as it is a general purpose
application, yet e-mail is used extensively by developers as
a hub for software-related activities such as code reviews, bug
reports, and feature discussions [5].

To identify any changes in tool-related behavior introduced
by social screencasting, we disabled screencast sharing for the
first week. After enabling sharing, we sent out an email to
the participants along with a video demonstrating how to use
the web interface to request and share screencasts with their
peers. At the end of the study, we conducted a semi-structured
interview with each participant to allow them to share their
own experiences with the system.

III. RESULTS

Unlike in-person peer observation, which occurs about once
per month [2], we observed 149 actions, spread across three
weeks, associated with requesting and viewing screencasts.
This averages to about one interaction per participant per day,
a considerable increase.

Five participants reported learning about one or more tools
while using the social screencasting system. For example,
Keith discovered the keyboard shortcut for GO TO INBOX from
Phil, and Phil learned the tool ARCHIVE EMAIL AND GO TO
NEXT from Bryant.



48 3 14

08

26 0 12

00

8 0

1

Bryant

DerrickMona

Vernon

Fig. 1: A Venn diagram of four participants’ use of Eclipse
tools. A majority of the tools are not used by more than one
person. For example, Mona uses 43 tools; she is the sole user
of 26 of them. Only one tool is used by all four participants.

Because the participants were from the same lab, and had
similar responsibilities, we expected them to use mostly the
same tools. Surprisingly, this was not the case, even across
applications. For example, consider the Venn diagram of the
four participants who used Eclipse over the course of the study,
shown in Figure 1. Each circle represents the set of tools used
by an individual; intersections represent tools used by more
than one person.1 Only a handful of common tools (e.g. SAVE,
PASTE) were used by more than one person, the rest seem
to be more complicated or potentially obscure — indicating
there are potentially many opportunities for tool transfer, even
among experts.

The data we captured showed five participants tried out
new tools at least once. However, the new tools were used
only a few times before returning to the old habits. After
Phil investigated ARCHIVE EMAIL AND GO TO NEXT by
requesting Bryant’s screencast, he used it once on the fifteenth
day of the study and then never again. Keith and Joey
showed similar behaviors, when they used their newly learned
keyboard shortcuts a few times, but then returning to the
mouse-based invocation after a few days.

IV. CHALLENGES

We just saw that participants did not radically change their
behavior as a result of using our social screencasting system.
To explain why, consider Phil’s post-study interview, where he
said, “It’s not that I don’t want to be brought to the next email,
I just don’t use [ARCHIVE EMAIL AND GO TO NEXT]. I have
pretty good muscle memory for [my old pattern], which is hard
to change.” Mona and Joey had similar remarks. These three
experiences are consistent with the active user paradox, which
states that even expert computer users are likely to continue
with their familiar, inefficient tool habits, even if there is a
demonstrably more efficient way to do the same job [6].

1A constraint in this visual representation is that it elides two intersections:
between Mona and Vernon (0), and Bryant and Derrick (1). Excel (n = 2)
and Gmail (n = 7) had similar usage characteristics to Eclipse (not shown).

We know developers learn tools from their coworkers and
eventually incorporate them into their work habits [1], [7], but
why did we not observe this to be the case when participants
used social screencasting? It appears our implemented social
influences are not enough to overcome the active user paradox,
and other factors may be at play.

Perhaps the participants simply forgot the keyboard short-
cuts they learned. Indeed, Krisler and Alterman found some
success by constantly reminding users of new keyboard short-
cuts with HotKeyCoach [8]. However, our evidence suggests
only two participants would have benefited from this approach.
For the other three participants, the tools they learned were
more complex than keyboard shortcuts.

Another explanation is that there is some social pressure
that comes with peer observation that positively influences the
tool knowledge transfer, which is not present in our system.
For example, Deutsch and Gerard showed that tasks can be
influenced by merely having another person in the room [9].
If this is the case, it is not obvious how to translate these
social influences to a workplace software setting in order to
more effectively facilitate tool knowledge transfer.

V. CONCLUSION

We hypothesized that social screencasting would facilitate
the transfer of tool usages in a way that was as effective as in-
person peer observation, without the need for colocation and
availability. Though we saw a lot of potential for learning new
tools and observed several cases of tool knowledge transfer,
the effects ended up being temporary. We suspect this to be
due to social nuances of the tool knowledge transfer process.
We are optimistic that these nuances can be identified and
emulated to fully realize the potential of social screencasting.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under grant number 1252995.

REFERENCES

[1] M. B. Twidale, “Over the shoulder learning: Supporting brief informal
learning,” CSCW 2005, vol. 14, no. 6, pp. 505–547, 2005.

[2] E. Murphy-Hill and G. C. Murphy, “Peer interaction effectively, yet
infrequently, enables programmers to discover new tools,” in CSCW 2011.
ACM, 2011, pp. 405–414.

[3] E. Murphy-Hill, “Continuous social screencasting to facilitate software
tool discovery,” in ICSE 2012. IEEE, 2012, pp. 1317–1320.

[4] M. Blum, A. Pentland, and G. Troster, “Insense: Interest-based life
logging,” IEEE MultiMedia, vol. 13, no. 4, pp. 40–48, 2006.

[5] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen,
“Communication in open source software development mailing lists,” in
MSR 2013. IEEE, 2013, pp. 277–286.

[6] W.-T. Fu and W. D. Gray, “Resolving the paradox of the active user:
Stable suboptimal performance in interactive tasks,” Cognitive Science,
vol. 28, no. 6, pp. 901–935, 2004.

[7] D. L. Jones and S. D. Fleming, “What use is a backseat driver? A
qualitative investigation of pair programming,” in VL/HCC 2013. IEEE,
2013, pp. 103–110.

[8] B. Krisler and R. Alterman, “Training towards mastery: overcoming the
active user paradox,” in NordiCHI 2008. ACM, 2008, pp. 239–248.

[9] M. Deutsch and H. B. Gerard, “A study of normative and informational
social influences upon individual judgment.” The Journal of Abnormal

and Social Psychology, vol. 51, no. 3, p. 629, 1955.


